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We exactly prove the no-passing rule in the ground state evolution of the random-field Ising model with
monotonically varying external field. In particular, we show that the application of the no-passing rule can
speed up the calculation of the zero-temperature equilibrium M�H� curve dramatically.
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I. INTRODUCTION

The no-passing rule was first introduced by Middleton in
the study of sliding charge-density waves �CDW’s� �1�. The
CDW problem belongs to the more general class of driven
elastic manifolds in random media. If one defines a simple
one-dimensional order parameter within the model, then a
natural partial ordering of the configurations can be defined.
In the simple CDW model considered by Middleton, the
CDW configuration ��i�t�� describes the CDW distortions at
N lattice sites indexed by i, with �i�t� real phase variables
and t the time. The equation of motion for an overdamped
CDW is governed by the Langevin dynamics

�̇i = �2�i − Vi���i� + f�t� . �1�

Here, the �2�i term represents the simple elastic interactions.
Vi���i� is the pinning force at site i due to the 2� periodic
pinning potential V��i�. And f�t� stands for the external driv-
ing force. Then one can define the natural partial ordering of
two configurations: CG= ��i

G��CL= ��i
L� if �i

G��i
L for each

site i of the system. The no-passing rule states that given a
driving force f if initially CG�0��CL�0�, then CG�t��CL�t�
for all t�0, i.e., the “greater” �CG� is never passed by the
“lesser” �CL�. As stressed by Middleton, this rule relies cru-
cially on the elastic potential being convex. In other words,
the elastic potential tends to decrease the separation of
nearest-neighbor �’s. More recently, Krauth et al. found a
similar no-passing rule in the study of driven elastic strings
in disordered media �2,3�. Obviously, this is the same general
problem. Again, the rule is crucially dependent on the fact
that the elastic potential is convex.

The no-passing rule can be used to prove many useful
properties, such as the asymptotic uniqueness of the sliding
state for CDW’s �1� and the intriguing memory effects �4�. In
fact, just after its introduction by Middleton, the no-passing
rule was used in the nonequilibrium zero-temperature
random-field Ising model �RFIM� by Sethna et al. to prove
the return point memory effect �4�. The RFIM is obtained by
adding a random field hi at each site of the Ising model

H = − �
�i,j	

Jsisj − �
i

�H + hi�si. �2�

The distribution of hi values is usually taken to be Gaussian,
with standard deviation R and mean 0. R is often called the
disorder parameter. J is the nearest-neighbor ferromagnetic
coupling strength and H is the uniform external field. In this
case, the natural partial ordering of two spin configurations

can be defined similarly as in the CDW case. The no-passing
rule states: Let a system CG�t� be evolved under the fields
HG�t� and similarly CL�t� evolved under HL�t�. Suppose the
fields HG�t��HL�t� and the initial configurations satisfy
CG�0��CL�0�, then CG�t��CL�t� at all times later t�0, i.e.,
the partial ordering will be preserved by the dynamics. With
a local metastable single-spin-flip dynamics, i.e., a spin flips
when its effective local field

hi
eff = J�

j

sj + hi + H �3�

changes sign, the proof of the no-passing rule is straightfor-
ward �4�. Even with a two-spin-flip dynamics, it has been
shown by Vives et al. that the no-passing rule is still true at
zero temperature �5�. Note that for the magnetization pro-
cess, the no-passing rule is equivalent to the fact that the
flipped spins can never flip back as H is swept monotoni-
cally. Again, this rule is not unconditionally true. It relies
crucially on the nearest-neighbor interaction being ferromag-
netic �J�0�. Just like the convex elastic potential, the ferro-
magnetic interaction also tends to decrease the separation of
nearest-neighbor degrees of freedom, i.e., it tends to align the
spins.

Recently, in the study of the equilibrium zero-temperature
RFIM, Vives et al. conjectured that when the external field H
is swept from −� to �, flipped spins cannot flip back in the
equilibrium M�H� curve �6�. In other words, the no-passing
rule is valid even for the zero-temperature equilibrium dy-
namics, i.e., the evolution of the ground state �GS�. Vives et
al. further conjectured that this rule can be used to speed up
the calculation of the equilibrium M�H� curve since flipped
spins at a lower field can be removed from the GS calcula-
tion for all higher fields. Unfortunately, this simple but pow-
erful rule has not been proven so far for the equilibrium
RFIM. This is the main motivation of our work.

This paper is organized as follows. In Sec. II, we give a
short introduction to the calculation of the equilibrium M�H�
curve of the zero-temperature RFIM. In Sec. III, we work out
some basic steps for the proof of the equilibrium no-passing
rule. In Sec. IV, we present the proof. In Sec. V, we show the
direct application of this rule to the calculation of the equi-
librium M�H� curve. Finally, in Sec. VI we discuss its valid-
ity in other systems.

II. EQUILIBRIUM M„H… CURVE

To calculate the equilibrium M�H� curve of the zero-
temperature RFIM, we first need to calculate the exact GS in
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the RFIM at an arbitrary applied external field H. This is the
basic step of calculating the equilibrium M�H� curve, i.e., the
GS evolution for varying H. Fortunately, there is a well-
known mapping of the RFIM GS problem to a min-cut or
max-flow problem in combinatorial optimization. The map-
ping and the so-called push-relabel algorithm for the min-cut
or max-flow problem has been well described in the litera-
tures �7,8�. For RFIM, the run time of the push-relabel algo-
rithm scales as O�N4/3� with N the system size �9,10�.

The equilibrium M�H� curve can be simulated with the
method reported in Refs. �9,11�. It is essentially based on the
fact that the GS energy E��si� ,H� is convex up in H, which
allows for estimates of the fields H where the magnetization
jumps �called “avalanches” occur�. This algorithm finds steps
by narrowing down ranges where the magnetization jumps
with an efficient linear interpolation scheme. An illustration
of the algorithm is shown in Fig. 1. The details have been
explained extensively in Ref. �11�. An example of the calcu-
lated equilibrium M�H� curve is shown in Fig. 2.

In the E-H diagram, for each state �si�, the total energy E
is represented by a straight line with slope −M 
−�isi since

E��si�,H� = E0��si�� − HM , �4�

with

E0��si�� = − �
�i,j	

Jsisj − �
i

hisi �5�

the energy axis intercept. E0 is also called the internal en-
ergy, i.e., the total energy of the configuration when H=0.
And the total energy E is also referred to as the magnetic
enthalpy. Consider a D-dimensional hypercubic lattice of
size N=LD. Let hmax �hmin� be the maximum �minimum� val-
ues of hi for a certain realization of the random fields.

Four simple propositions follow here, which are very use-
ful in understanding the algorithm to calculate the equilib-
rium M-H curve. Note that Propositions 1, 2, and 3 are just
reproduced from Ref. �11�. The proofs have been given
there. Proposition 4 is new and the proof is given in the
Appendix.

Proposition 1. For H�−hmax �H�−hmin�, the ground
state is �si=−1� ��si= +1��.

Proposition 2. Let the spin configuration C1 �C2� be the
ground state for H=H1 �H=H2�. They have magnetization
M1 and M2, respectively. If C1�C2 and H2�H1, then M2
�M1.

Thus, when sweeping the external field from H=−� to
H=�, the magnetization M will increase monotonically. A
corollary of this proposition is that in the E–H diagram if the
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FIG. 1. �Color online� An illustration of the algorithm to calculate the equilibrium M-H curve. Calculate the energies E1 and E2 of the
two simplest states C1= �si=−1� and C2= �si= +1�, respectively, as a function of H. According to Proposition 1, C1 �or C2� would be the
ground state for H�−hmax �or H�−hmin�. Calculate the crossing field H��C1 ,C2� where E1=E2. Check whether there is a GS at H�, which
is different from C1 and C2. If no, the algorithm ends. If yes, denote the GS as C, calculate the crossing field H��C ,C1� and H��C ,C2�. At
the new crossing fields, check whether there is a GS which is different from the two intersected states. The algorithm will not end until all
the crossing fields have been checked. An example of the calculated equilibrium M-H curve is shown in Fig. 2.
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FIG. 2. �Color online� The equilibrium M-H curve �the ground
state evolution� for the Gaussian RFIM with D=3, L=32, and R
=2.837. Here R is the standard deviation of the Gaussian random-
field distribution. The inset shows a detail of the M�H� curve near
H=0, where magnetization jumps are clearly seen.
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slopes of the lines corresponding to the ground states C1 and
C2 are different, i.e., M1�M2, and without loss of generality
we can assume M1�M2, then the lines intersect at a field H�

such that H1�H��H2. This field H��C1 ,C2� is defined as
the crossing field between C1 and C2. According to the defi-
nition, one has E0�C1�−H�M1=E0�C2�−H�M2, so

H��C1,C2� =
E0�C2� − E0�C1�

M2 − M1
. �6�

For example, we can calculate the crossing field between the
two simplest ground states: C1= �si=−1� with M1=−N and

C2= �si= +1� with M2=N. We have H�=−1/N�ihi=−h̄i �12�.
Proposition 3. Let the spin configuration C1 �C2� be the

ground state for H=H1 �H=H2�. C1�C2, H2�H1, and the
crossing field between C1 and C2 is H�. If there is no con-
figuration C such that E�C ,H���E�C1 ,H��=E�C2 ,H�� then
�i� C1 is the ground state at least for the field range �H1 ,H��
and �ii� C2 is the ground state at least for the field range
�H� ,H2�.

This is the most important proposition. Its power comes
from the fact that it can be applied iteratively. And finally, we
get the M�H� curve with all the ground states �see Fig. 1�.

Proposition 4. If the ground state is nondegenerate, then
there cannot be more than one avalanche connecting two
nearest ground states in the E-H diagram.

The proof of this interesting proposition is shown in the
Appendix. This proposition says that if the GS is nondegen-
erate, when we increase the external field H adiabatically
slowly, we can trigger just one avalanche at a time.

III. PREPARATIONS OF THE PROOF

In this section, we will work out the total energy change
of the spin configuration due to multiple spin flips and exter-
nal field varying. The spin configuration is not necessarily
the ground state.

First, let us consider the simplest case of a single spin flip.
Suppose only one spin �si� flips during the evolution of con-
figuration C at H to configuration C� at H�, with �H=H�
−H and �M =M�−M. Define ni �or ni�� to be the number of
the ith spin’s nearest neighbors that point in the same direc-
tion as the spin in configuration C �or C��. We call these
spins the same-direction nearest neighbors �SDNN� of the ith
spin. Note that ni=0,1 ,2 , . . . ,Z with Z=2D the coordination
number of the D-dimensional hypercubic lattice.

It is easy to get the bond energy change 4J�ni−D�. The
total energy change due to the single spin flip and the vary-
ing external field is given by

f i�H,�H� = f i�H� − �HM�. �7�

Here we have defined

f i�H� 
 f i�H,0� = 4J�ni − D� − �hi + H��si, �8�

which is the energy change due to spin i flipping for the
configuration C just at the field H, i.e., �si= ±2 with �H
=0. It is easy to check that

f i,±�H� = f i,±�0� ± 2H = ± 2hi
eff, �9�

where “±” represents si= ±1 and �si= 	2, accordingly.
Second, we consider two spin flips. Suppose two different

spins �si and sj� flip during the evolution of configuration C
at H to configuration C� at H�. There are two subcases.

�1� si and sj are not next to each other. The energy change
is

f i,j�H,�H� = f i�H� + f j�H� − �HM�. �10�

�2� si and sj are next to each other. The energy change is

f �i,j	�H,�H� = f i�H� + f j�H� − 4J�si · sj� − �HM�. �11�

Note that the term −4J�sisj� is just due to the fact that the
energy of the i-j bond will not change during the flip.

Finally, let us consider the general case �see Fig. 3�a��.
There are many spin flips during the evolution of configura-
tion C at field H to C� at field H�. It is easy to check that the
total energy change is given by

�E�H,�H� = �f i�H� + f j�H� + ¯� − 4J�sisj + ¯�

− �H�M + �si + �sj + ¯� . �12�

On the right-hand side �RHS�, the first term includes all the
flipping spins. The second term includes all the nearest-
neighbor interactions among those flipping spins. The last
term is due to the varying external field. In particular, if all
the flipping spins flip at the same H and they are connected
to each other and have the same spin value −1 �or +1� before
the flip, then this collective spin flip is called an avalanche
�or a reverse avalanche�.

Denote the energy change due to an avalanche A
 as
fA


�H ,�H�; we have

fA

�H,�H� = �f i�H� + f j�H� + ¯� − 4JNb�A
�

− �H�M + 2S
�


 fA

�H� − �H�M + 2S
� , �13�

with Nb�A
� defined as the number of interacting bonds in
A
, S
 the size of the avalanche, and fA


�H� the energy
change due to the avalanche when �H=0. Similarly, for the
reverse avalanche, we have

fA
�
r �H,�H� = �f i�H� + f j�H� + ¯� − 4JNb�A�

r �

− �H�M − 2S�
r �


 fA
�
r �H� − �H�M − 2S�

r � . �14�

Due to Eq. �9�, we have

fA

�H� = fA


�0� − 2S
H , �15�

fA
�
r �H� = fA

�
r �0� + 2S�

r H . �16�

Now we can rewrite Eq. �12� in terms of fA

and fA

�
r . The

total energy change due to avalanches and reverse ava-
lanches is given by
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�E�H,�H� = FA�H� + FAr�H� + 4JNb�A,Ar�

− �H�M + 2SA − 2SAr� , �17�

with notations FA�H�
�
fA

�H�, FAr�H�
��fA

�
r �H�, SA


�
S
, and SAr 
��S�
r . Here Nb�A ,Ar� denotes the number

of interacting bonds between avalanches and reverse ava-
lanches. For example, in Fig. 3�a�, Nb�A ,Ar�=3.

IV. PROOF OF THE NO-PASSING RULE

Now we are ready for the proof of the no-passing rule. Let
the spin configuration C1 �C2� be the ground state for H
=H1 �H=H2�, H2�H1. Suppose C1 and C2 are connected
with multiple avalanches: A1 ,A2 , . . . ,An with sizes
S1 ,S2 , . . . ,Sn and reverse avalanches A1

r ,A2
r , . . . ,Am

r , with
sizes S1

r ,S2
r , ¯ ,Sm

r , respectively. To compensate these re-
verse avalanches �so as to make sure M is monotonically
increasing, see Proposition 2�, we must have SA=�
=1

n S


�SAr =��=1
m S�

r �see Fig. 3�a��.
The idea is that if C2 is the GS at field H2, then it should

have lower energy than any other spin configuration at H2.
But we will prove this is not true. Just consider another spin

configuration C̃. The only difference between C2 and C̃ is

that C̃ is evolved from C1 without any reverse avalanches

�see Fig. 3�b��. We now try to prove that E�C̃ ,H2�
�E�C2 ,H2�, so C2 cannot be the GS at H2. But this is

equivalent to proving that �Ẽ��E. Here,

�E 
 E�C2,H2� − E�C1,H1�

= FAr�H1� + FA�H1� + 4JNb�A,Ar�

− �H�M − 2SAr + 2SA� . �18�

On the other hand,

�Ẽ 
 E�C̃,H2� − E�C1,H1� = FA�H1� − �H�M + 2SA� .

�19�

Therefore,

�E − �Ẽ = FAr�H1� + 4JNb�A,Ar� + 2SAr�H � 0. �20�

Here we have used the fact that C1 is the ground state for
H=H1 such that any kinds of spin flip will increase the en-
ergy: fA

�
r �H1��0⇒FAr�H1��0. Also, for the ferromagnetic

RFIM, J�0. Since each term is positive, so the sum is posi-

tive, i.e., �E��Ẽ or E� Ẽ. Actually, for any state C2, which
evolved from C1 with reverse avalanches, we can find a cor-

responding state C̃, which evolved from C1 without any re-
verse avalanches that has lower energy than C2 at field H2.
So reverse spin flips are impossible for ground state evolu-
tion when increasing external field. Generally, flipped spins
can never flip back when we sweep the external field mono-
tonically.

V. APPLICATION

The straightforward application of the no-passing rule is
very useful to accelerate the calculation of the ground states

(a)

A1

A2

A3

A4

Ar
1

Ar
2

(b)

A1

A2

A3

A4

FIG. 3. States evolved from C1, with only the change of the spin configuration, i.e., avalanches and reverse avalanches are explicitly
shown. �a� State C2: evolved from state C1 with both avalanches and reverse avalanches. �Black dot� Spins flip up, forming avalanches �A1,
A2, A3, and A4�. �White dot� Spins flip down �reverse flip�, forming reverse avalanches �A1

r ,A2
r�. Note that there are three interacting bonds

between avalanche A2 and reverse avalanche A2
r . �b� State C̃ evolved from state C1 without reverse avalanches.
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when varying the external field. Suppose the GS C1 at field
H1 has already been obtained, and we want to calculate the
GS C2 at field H2 with H2�H1. According to the no-passing
rule, the up spins in C1 will stay up in C2, i.e., those spins are
frozen, so we need not consider them in the ground state
analysis. We just need to consider the down spins in C1. The
only cost is that we have to deal with the frozen up spins as
complicated fixed boundary conditions for the down spins
�13�. At first sight, one may think that only when the density
of the frozen spins is big enough can we make the GS cal-
culation faster. But how big is enough? To optimize our cal-
culation, we consider the running time difference ��t� be-
tween the two methods: �I� without using the earlier solution
C1, and �II� using the earlier solution C1. For both methods,
ground states are found by using the push-relabel algorithm.
The numerical experiments are conducted on a desktop with
2.80 GHz CPU and 2GB memory. And we tune the up-spin
density nup �down-spin density ndown� by varying H1. The
result is shown in Fig. 4. It is found that for H2�H1, as long
as nup�0.07 in GS C1, method II will be faster than I. Sym-

metrically, for H2�H1, as long as ndown�0.07 in GS C1,
method II will be faster than method I. This suggests it is not
necessary to have an extremely large portion of frozen spins
to use the earlier solution. Freezing a tiny part of spins will
accelerate the GS calculation already. Furthermore, for larger
and larger density of the frozen spins, using the earlier solu-
tion will save more and more running time. �Keep in mind
that for RFIM, the running time of the push-relabel algo-
rithm scales as O�N4/3�.� Consequently, the calculation of the
whole M�H� curve will be sped up dramatically.

VI. DISCUSSIONS

Throughout our proof of the no-passing rule, we do not
assume that the ground state is unique. In other words, the
no-passing rule is correct even when the ground state is de-
generate. For example, this happens for the RFIM when the
random fields are chosen from a bimodal distribution �14�.

In the proof we explicitly use the fact that the nearest-
neighbor interaction should be ferromagnetic �J�0�. This
means any antiferromagnetic interactions will destroy the no-
passing rule. Thus, for other random magnet models, if Jij
could be negative, such as the random-bond Ising model
�RBIM� with negative Jij or the spin glasses, the rule will be
violated.

Finally, we conjecture that for elastic manifolds in random
media, there could be a similar equilibrium no-passing rule
at zero temperature, provided that the elastic potential is con-
vex and partial ordering of the configurations can be clearly
defined.
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APPENDIX: A SINGLE AVALANCHE CONNECTS TWO
NEAREST GROUND STATES

Here, we show the proof of Proposition 4.
Proof. Suppose when the field is increased from H1 to H2,

the GS C1 evolves to the nearest GS C2 with two avalanches
�A1 and A2 with size S1�1 and S2�1, respectively�.

The crossing field is given by

H��C1,C2� =
E0�C2� − E0�C1�

M2 − M1
=

fA1
�0� + fA2

�0�

2�S1 + S2�
. �A1�

The last line is due to Eq. �17�. We can choose a trial state C,
which is evolved from C1 with only avalanche A1 occurring.
We want the following relation to hold:

E�C,H�� � E�C1,H�� = E�C2,H�� , �A2�

which is equivalent to
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FIG. 4. Running time difference ��t� between methods with and
without using the earlier solution, i.e., the GS C1 at field H1, to
calculate the GS C2 at field H2. The time difference �t �given in
seconds� is plotted against the up-spin �or down-spin� density of the
GS C1. �t�0 means using the earlier solution will save the running
time. Calculations are done for 3D Gaussian RFIM �with disorder
parameter R=2.27� for different system sizes. �Top� H2�H1. Up
spins in C1 at field H1 will stay up at field H2. �Bottom� H2�H1.
Down spins in C1 at field H1 will stay down at field H2.
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E�C,H�� − E�C1,H�� = fA1
�H�� = fA1

�0� − 2S1H� � 0.

�A3�

Plugging Eq. �A1� in it, we just need to prove

S2fA1
�0� � S1fA2

�0� . �A4�

If we do have S2fA1
�0��S1fA2

�0�, then we choose the trial
state C, which has lower energy than C1 and C2 at the field
H�; if S2fA1

�0��S1fA2
�0�, then we can choose another trial

state C�, which is evolved from C1 through only avalanche
A2 and has lower energy than both C1 and C2 at H�. In both
cases, we have shown that C2 cannot be the nearest GS at H2

for the GS C1 at H1, if C1 evolves to C2 with two avalanches.
If S2fA1

�0�=S1fA2
�0�, it is easy to show that E�C1 ,H��

=E�C ,H��=E�C� ,H��=E�C2 ,H��, then there will be degen-
erate ground states at H�, which is in contradiction to the
hypothesis of Proposition 4.

Q.E.D.
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